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Introduction

� Web search engines like Google and
Yahoo! monetize their service by
auctioning off advertising space
next to their standard algorithmic
search results.



Introduction

� For example, Apple or Best Buy may 
bid to appear among the 
advertisements – usually located
above or to the right of the 
algorithmic results



Introduction

� These sponsored results are displayed
in a format similar to algorithmic
results: 
� as a list of items each containing

� title,

� text description

� hyperlink to the advertiser’s Web page.



Introduction

� We call each position in the list a 
slot.





Introduction

� More than 50% of Web users visit a 
search engine every day

� Americans conduct roughly 6 billion Web 
searches per month

� Over 13% of traffic to commercial sites is 
generated by search engines

� Over 40% of product searches on the
Web are initiated via search engines.



Introduction

� Today, Internet giants Google and Yahoo!
boast a combined market capitalization
of over $150 billion, largely on the 
strength of sponsored search.

� Roughly 85% of Google’s $4.1 billion
and roughly 45% of Yahoo!’s $3.7 billion
in 2005 revenue is likely attributable to
sponsored search.



Introduction

� Advertisers specify:
� List of pairs of keywords

� Bids

� Total maximum daily or weekly budget.

� Every time a user searches for a 
keyword, an auction takes place 
among the set of interested
advertisers who have not exhausted 
their budgets.



Existing Models

� Static
� Vickrey Clarke Grooves Mechanism 

(VCG)

� Generalized First Price (GFP)

� Generalized Second Price (GSP)

� Dynamic
� On-line Allocation Problem



Static

� n bidders/advertisers

� k slots (k is fixed apriori – k<n)

� as a click through rate (CTR) of 
the bidder j if placed in slot i

� is the value of the bidder j for a 
click

ijα

jv



Static

� Αssumptions
� Bidders prefer a higher slot to a lower slot

� is independent of the slot position (static)

� CTR for a slot does not depend on the identity of 
other bidders.

� CTRs are assumed to be common knowledge
(static nature)
� not the reality - CTRs can fluctuate dramatically 

over small periods)

iv

ij i 1, j  for i=1,2,..., k 1+α ≥ α −



Static

� Revenue Maximization

� Allocative Efficiency



Revenue Maximization

� Result of Myerson

� The generalized Vickrey auction is applied 
not to the actual values but to the 
corresponding virtual values

� Generalized Vickrey auction with reserve 
prices

jv



Revenue Maximization

� Maximization bidder payments:

n

j
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Revenue Maximization

� Surplus Allocation:
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� Virtual Surplus Allocation:

� where: j j

j j j

j j
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: expected CTR of 
bidder j who 
bids b

jx (b)

: drawn ind/ntly
from continuous 
prob. 
distribution

jv



Revenue Maximization

� Expected Profit of a Truthful Mechanism M,is
equal to the Expected Virtual Surplus:

t t j j j

j

E (M (t)) E (v )x (t)
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∑

�Proof:
h
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�Mechanism Truthful in Expectation:

� Monotone non-decreasing

�
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Revenue Maximization

� Thus, Virtual surplus is truthful

if and only if

is monotone non-decreasing inj j(v )ϕ jv

�Myerson Mechanism:
� Given bids b and F (here Bayesian – Nash 

distribution), compute ‘virtual bids’:

� Run VCG on b’ to get x’ and p’

� Output x=x’ and p with

i i ib (b )′ = ϕ

1

i i ip (p )− ′= ϕ



Revenue Maximization

� F is the Bayesian – Nash distribution 
of    of the generalized Vickrey 
(second price) auction (second price) 
with reserve prices

� Proof similar with the Vickrey (second 
price) auction (second price) with 
reserve price for 1 item



Revenue Maximization

� Revenue without reserve price: 

� Revenue with reserve price r: 
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Revenue Maximization

� Revenue without reserve price:
� Given VA, B’s valuation is likely to lie 

anywhere between 0 and VA

� On average VB = VA/2

� On average, VB halfway between 0 and 
VA

� On average, VA halfway between VB and 
1



Revenue Maximization

� Revenue without reserve price:
� E[VB] = 1/3 and E[VA] = 2/3

� E[VB] = E[VA]/2 = 1/3



Revenue Maximization

� Revenue with reserve price r:
� It may be the case that a bidder has 

positive valuation but negative virtual 
valuation. 

� Thus, for allocating a single item, the 
optimal mechanism finds the bidder with 
the largest nonnegative virtual valuation 
if there is one, and allocates to that 
bidder



Revenue Maximization

� Revenue with reserve price r:
� bidder 1 (same for bidder 2) wins precisely when:

� Since 

{ }
{ }
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Revenue Maximization

� Revenue with reserve price r:
� For r=1/2:

� Pr[both below 1/2]=1/2*1/2=1/4

� Pr[both above 1/2]=1/2*1/2=1/4

� Pr[one above 1/2]=1/2

� Est. payoff both below = 0

� Est. payoff both above = 4/6

� Est. payoff one above = 1/2

1
2

1 1 4 1 1 5
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4 4 6 2 2 12
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Allocative Efficiency

� Let             if bidder j is assigned slot i

� otherwise

ijx 1=

ijx 0=



VCG

� Solution of LP:
k n

ij j ij
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VCG

� Dual:
k n

i j

i 1 j 1

i j ij j

i j
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s.t.   p q v      ,    i=1,2,...,k    ,    j=1,2,...,n
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p :  expected payment bidder
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VCG

� Special Case:
� CTRs bidder independent:

� Simple algorithm Northwest Corner Rule:

� Assign bidder with highest value top slot, 
second highest value second slot e.t.c

� Assortative assignment

ij iα = µ



VCG

� Cons
� requires solving a computational problem 

which needs to be done online for every 
search and is expensive

� Other mechanisms better revenues than 
VCG



GFP

� Let b1,…,bn be the bids. The GFP 
mechanism is as follows:
� Sorts bidders according to the bids 

b1,…,bn.

� Assigns slots according to the order 
(assign top slot to the highest bidder and 
so on).

� Charge bidder i according to his bid.

� Yahoo! used a GFP auction until 2004.



GSP

� Let w1,…,wn be the weights on bidders 
which are static and independent of the 
bids b1,…,bn. The GSP mechanism is as 
follows:
� Sort bidders by

� (assume ) 

� Allocate slots to bidders 1 ,…,k in that order 
(i.e., bidder i gets the ith slot if ).

� Charge i the mininum bid he needs to retain his 
slot (i.e., ).
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GSP

� Overture model: For every i,          
(bidders ordered according to the bids 
only).

� Google model: Google assigns weights 
based on the CTR at the top slot . 
The assumption here is that is static (or 
slow changing)

� This ordering is also called ‘revenue order’
since is the expected revenue if 
i is put in slot 1 and there is only one slot.

iw 1=

i i1w α≃
i1α

i i1 is b= α



GFP not truthful

� Payoff in general: 



GSP not truthful

� Payoff in general: 



GSP not truthful

� Payoff in general: 



GSP not truthful

� Payoff in general: 



VCG Payoff

� Payoff in general:

� eachbidder j would be made to pay the sum of

for every I below him
i 1 i i(c c )b− −



GSP vs VCG

� Search engines revenues under GSP 
better than VCG:

VCG VCG

i i i 1 i 1 i i 1 i 1 i i 1 i 1 i 2 i i i 1 i 1c p c p (c c )b c b c b c p c p+ + + + + + + + +− = − ≤ − = −



Equilibrium Properties

� GFP: Bayes-Nash symmetric equilibrium
� argument identical to that of the sealed bid first 

price auction for a single good for symmetric 
bidders (same distributions) the revenue 
equivalence theorem implies that revenue from GFP 
is the same as any other auction that allocates 
according to bid order.

� Revenue Equivalence Principle Under certain 
weak assumptions, for every two Bayesian–Nash 
implementations of the same social choice function f 
, we have that if for some type t’ of player i, the 
expected (over the types of the other players) 
payment of player i is the same in the two 
mechanisms, then it is the same for every value of 
i’s type t.



Equilibrium Properties

� GSP: Today nothing is known about the 
Bayesian equilibrium of the GSP auction

� Special Case:
� CTRs are separable:

ij i j

ij i

special case:

α = µ β

α = µ

� Locally Envy-Free equilibria



GSP Equilibrium Properties

� Retaliation:

k  can retaliate...′

k

k k

Suppose advertiser k bids b   assigned

to position i, and advertiser k  bids b > b

assigned to position (i - 1).

′

→

′

→

If k raises his bid slightly, his own payoff does not

change, but the payoff of the player above him

decreases



GSP Equilibrium Properties

� Vector of bids changes all time

� What if the vector converges to a rest 
point?

� An advertiser in position i should not want 
to “exchange” positions with the advertiser 
in position (i-1)

� “locally envy-free” vectors



GSP Equilibrium Properties

� An equilibrium of the simultaneous-move 
game (Γ) induced by GSP is locally envy-
free if a player cannot improve his payoff by 
exchanging bids with the player ranked one 
position above him

i g(i) i i 1 g(i) i 1v p v p− −µ − ≥ µ −



GSP Equilibrium Properties

� LEMMA 1: The outcome of any locally envy-free 
equilibrium of auction Γ is a stable assignment.

� Proof:

� no advertiser can profitably rematch with a position

assigned to an advertiser below him (equilibrium)

i g(i) i i 1 g(i) i 1v p v p+ +µ − ≥ µ −



GSP Equilibrium Properties

� Proof (cont):

� show that no advertiser can profitably rematch 
with the position assigned to an advertiser more 
than one spot above him

� locally envyfree equilibrium: matching must be
assortative

i g(i) i i 1 g(i) i 1

i 1 g(i 1) i 1 i g(i 1) i

i i 1 g(i) i i 1 g(i 1)

v p v p

v p v p
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( )v ( )v

+ +

+ + + +

+ + +

µ − ≥ µ −

µ − ≥ µ −

µ −µ ≥ µ −µ



GSP Equilibrium Properties

� Proof (cont):

i g ( i ) i i 1 g ( i ) i 1

i 1 g ( i 1) i 1 i 2 g ( i 1) i 2

m 1 g ( m 1) m 1 m g ( m 1) m

i g ( i ) i m g ( i ) m

Suppose  m i:

v p v p

v p v p

.

.

.

v p v p
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v p v p

− −

− − − − − −

+ + + +

≤

µ − ≥ µ −

µ − ≥ µ −

µ − ≥ µ −

µ − ≥ µ −



GSP Equilibrium Properties

� LEMMA 2: If the number of advertisers is greater 
than the number of available positions then any 
stable assignment is an outcome of a locally envy-
free equilibrium of auction Γ

� Proof:

� stable assignment ⇒ assortative ⇒ advertisers are 
labeled in decreasing order of their bids:

j kv v j k> ⇔ <

� Thus, advertiser i match with position i, payment i



GSP Equilibrium Properties

� Proof (cont):

� Let:

1 1

i 1
i

i 1

b v

and

p
b   for  i>1−

−

=

=
µ



GSP Equilibrium Properties

� Proof (cont):

� Let:

i i 1

i 1 i i 1 i
i i i 1 i i 1 i i i

i 1 i i 1 i

b b

otherwise :

p p p p
v v v p v p

+

− −
− −

− −

>

≤ ⇒ − ≥ − ⇒µ − ≥ µ −
µ µ µ µ

� So, deviating and moving to a different position 
in this strategy profile is at most as profitable for 
any player as rematching with the corresponding 
position in the assignment game Γ



GSP Equilibrium Properties

� Let assign:

V C G

i ip p→

� THEOREM 1: Strategy profile B* is a locally
envy-free equilibrium of game Γ. In this 
equilibrium, each advertiser’s position and 
payment are equal to those in the dominant-
strategy equilibrium of the game induced by 
VCG. In any other locally envy-free equilibrium 
of game Γ, the total revenue of the seller is at 
least as high as in B*.



GSP Equilibrium Properties

� Proof:
� Payments under strategy profile B* coincide with

VCG ⇒ B* locally envy-free equilibrium
(construction)

� This assignment is:

� Best stable assignment for all advertisers

� Worst stable assignment for auctioneers



GSP Equilibrium Properties

� In any stable assignment:
VCG

k k 1 k k

k 1 k k 1 k k

k 1 k k 1

p v p

otherwise advertiser k+1 would find it profitable to match with

position k. Next,

p p ( )v

otherwise advertiser k would find it profitable to match with

position k-1

p p (

+

− −

− −

≥ µ =

− ≥ µ −µ

− ≥ µ k k

VCG VCG

k 1 k 1 k k k k 1 k k k k 1

)v

p ( )v p ( )v p p− − − −

−µ ⇒

≥ µ −µ + = µ −µ + ≥



Dynamic Aspects

� Online Allocation Problem
� Auctions are repeated with great 

frequency

� Model them as repeated games of 
incomplete information

� For simplicity we assume that each page 
has only one slot for advertisements.

� The objective is to maximize total 
revenue while respecting the budget 
constraint of the bidders



Online Allocation Problem

� n number of advertisers and m the number of 
keywords.

� advertiser j has a bid of bij for keyword i and 
a total budget of Bj. 

� Bids are small compared to budgets
� Since search engine has an accurate estimate 

of ri, the number of people searching for 
keyword i for all 1 ≤ i ≤ m, it is easy to 
approximate the optimal allocation using a 
simple LP

� xij be the total number of queries on keyword 
i allocated to bidder j



Online Allocation Problem

� LP:



Online Allocation Problem

� Dual:



Online Allocation Problem

� Complementary slackness:

bij(1-βj)=α’=max bik(1-βk) , 1≤k≤n

� Search engine allocates its corresponding 
advertisement space to the bidder j with the 
highest bij (1-βj)

� if we allocate keyword i to agent now we obtain an 
immediate ‘payoff’ of bij.

� However, this consumes bij of the budget ⇒
opportunity cost of bijβj.

� Reasonable to assign keyword i to j provided

bij(1-βj) > 0



Online Allocation Problem

� Greedy:
� among the bidders whose budgets are not 

exhausted, allocate the query to the one with 
the highest bid

� competitive ratio—the ratio between online 
algorithm’s performance and the optimal 
offline algorithm's performance

� Competitive ratio of greedy algorithm is 
1/2



Online Allocation Problem

� Greedy procedure is not guaranteed to find 
the optimum solution:
� 2 bidders each with a budget of $2.

� b11 = 2, b12 = 2 − ε, b21 = 2, b22 = ε

� If query 1 arrives before query 2, it will be 
assigned to bidder 1.

� bidder 1’s budget is exhausted. When query 2 
arrives, it is assigned to bidder 2.

� Objective Function value of 2 + ε.

� The optimal solution would assign query 2 to 
bidder 1 and query 1 to bidder 2, yielding an 
objective function value of 4 - ε.



Online Allocation Problem

� Similar to Graph Matching 
Problem:
� Consider the set G of girls 

matched in Mopt but not in 
Mgreedy

� Then every boy B adjacent
to girls in G is already 
matched in Mgreedy:|B| 
≤|Mgreedy|

� There are at least |G| such 
boys (|G| ≤|B|) otherwise 
the optimal algorithm could, 
not have matched all the G 
girls. So:|G| ≤|Mgreedy|

� By definition of G also: 
|Mopt| ≤|Mgreedy| + |G|

� |Mgreedy|/|Mopt| ≥1/2



Online Allocation Problem

� Can we do better?

� BALANCE algorithm:
� For each query, pick the advertiser with 

the largest unspent budget



Online Allocation Problem

� Two advertisers A and B

� A bids on query x, B bids on x and y
� Both have budgets of $4

� Query stream: xxxxyyyy
� BALANCE choice: ABABBB__

� Optimal: AAAABBBB

� Competitive ratio = ¾



Analyzing BALANCE



BALANCE: General Result

� In the general case, worst 
competitive ratio of BALANCE is 
� 1–1/e = approx. 0.63

� Let’s see the worst case that gives 
this ratio



Worst Case for BALANCE

� N advertisers: A1, A2, … AN
� Each with budget B > N

� Queries: N·B queries appear in N rounds of 
B queries each:
� Bidding:Round 1 queries: bidders A1, A2, …, AN

� Round 2 queries: bidders A2, A3, …, AN

� Round queries: bidders Ai, …, AN

� Optimum allocation: Allocate round i
queries to Ai



Worst Case for BALANCE



BALANCE Algorithm

� βj’s as a function of the bidders spent 
budget

� βj’s as a function of the bidders spent budget

� fj: the fraction of the budget of bidder j , 
which has been spent

�Algorithm: Every time a query i arrives, 
allocate its advertisement space to the bidder 
j , who maximizes bijφ(fj)



BALANCE Algorithm

� Let k be a sufficiently large number used for 
discretizing the budgets of the bidders. 

� Advertiser is of type j if she has spent within (
j−1/k , j/k ] fraction of budget so far. 

� sj: Total budget of type j bidders.

� For i = 0, 1, . . . , k, define wi: Amount of money 
spent by all bidders from the interval ( i−1/k , i/k ] 
of their budgets

� Discrete version of function φ:



BALANCE Algorithm

� When k tends to infinity:

�Let OPT be the solution of the optimal off-
line algorithm



BALANCE Algorithm

� Lemma: At the end of the algorithm, this 
inequality holds:



BALANCE Algorithm

�Lemma Proof:
� Consider time query q arrives.

� OPT allocates q to a bidder of current type t , 
whose type at the end of the algorithm will be t′.

� bopt , balg: amount of money that OPT and the 
BALANCE get from bidders for q.

� Let i be the type of the bidder that the algorithm 
allocates the query



BALANCE Algorithm
� Theorem: The competitive ratio of Algorithm 1 is 1 − 1/e.
� Proof:

� By definition: 

�Thus:

�We conclude that:

�Note that as k goes to infinity the left-hand 
side tends to (1 − 1/e )OPT. Right-hand 
revenue of the BALANCE



Bibliographic Notes
� G. Demange, D. Gale, and M. Sotomayor. Multi-item 

auctions. J. Political Econ., 94(4):863–872,1986
� B. Edelman, M. Ostrovsky, and M. Schwarz. Internet 

advertising and the Generalized Second Price auction: 
Selling billions of dollars worth of keywords. Amer. Econ. 
Review, In press

� S. Lahaie. An analysis of alternative slot auction designs for 
sponsored search. In Proc. 7th Conf. On Electronic 
Commerce, Ann Arbor, MI, 2006

� G. Aggarwal, A. Goel, and R. Motwani. Truthful auctions for 
pricing search keywords. In Proc. 7th ACM Conf. on 
Electronic Commerce, Ann Arbor, MI, 2006

� A. Mehta, A. Saberi, U. Vazirani, and V. Vazirani. AdWords 
and generalized on-line matching. In Proc. 46th Annual 
Symp. on Fdns. of Comp. Sci., 2005

� Internet


