Sponsored Search Auctions

tou Kupıákou \sum غ́pүๆ

Introduction

\square Web search engines like Google and Yahoo! monetize their service by auctioning off advertising space next to their standard algorithmic search results.

Introduction

\square For example, Apple or Best Buy may bid to appear among the advertisements - usually located above or to the right of the algorithmic results

Introduction

\square These sponsored results are displayed in a format similar to algorithmic results:

- as a list of items each containing
\square title,
\square text description
\square hyperlink to the advertiser's Web page.

Introduction

\square We call each position in the list a slot.
$\leftarrow \rightarrow$ C \bigcirc gr.search.yahoo.com/search;_ylt=AiRydQzNI2ZDh9XSueClH4sni7x_;_ylc=X1MDMjE0MzA2NTg5NQRfcgMyBGZyA3ImcC10LTcOMQRuX2dwcwMxMARvcminaW4DZ3IueWFob28uY2! $\hat{\AA}$.

Introduction

\square More than 50\% of Web users visit a search engine every day
\square Americans conduct roughly 6 billion Web searches per month
\square Over 13\% of traffic to commercial sites is generated by search engines
\square Over 40\% of product searches on the Web are initiated via search engines.

Introduction

\square Today, Internet giants Google and Yahoo! boast a combined market capitalization of over \$150 billion, largely on the strength of sponsored search.
\square Roughly 85% of Google's \$4.1 billion and roughly 45\% of Yahoo!'s \$3.7 billion in 2005 revenue is likely attributable to sponsored search.

Introduction

\square Advertisers specify:

- List of pairs of keywords
- Bids
- Total maximum daily or weekly budget.
\square Every time a user searches for a keyword, an auction takes place among the set of interested advertisers who have not exhausted their budgets.

Existing Models

\square Static

- Vickrey Clarke Grooves Mechanism (VCG)
- Generalized First Price (GFP)
- Generalized Second Price (GSP)
\square Dynamic
- On-line Allocation Problem

Static

$\square \mathrm{n}$ bidders/advertisers
$\square k$ slots (k is fixed apriori $-k<n$)
$\square \alpha_{i j}$ as a click through rate (CTR) of the bidder j if placed in slot i
$\square V_{j}$ is the value of the bidder j for a click

Static

\square Assumptions

- Bidders prefer a higher slot to a lower slot

$$
\alpha_{i j} \geq \alpha_{i+1, j} \text { for } i=1,2, \ldots, k-1
$$

- V_{i} is independent of the slot position (static)
- CTR for a slot does not depend on the identity of other bidders.
- CTRs are assumed to be common knowledge (static nature)
\square not the reality - CTRs can fluctuate dramatically over small periods)

Static

\square Revenue Maximization
\square Allocative Efficiency

Revenue Maximization

\square Result of Myerson
\square The generalized Vickrey auction is applied not to the actual values v_{j} but to the corresponding virtual values
\square Generalized Vickrey auction with reserve prices

Revenue Maximization

\square Maximization bidder payments:

$$
\max \sum_{j=1}^{n} p_{j}
$$

Revenue Maximization

\square Surplus Allocation:

$$
\max \sum_{j=1}^{n} x_{j}(b) v_{j}
$$

$x_{j}(b)$: expected CTR of bidder j who bids b
\square Virtual Surplus Allocation:

$$
\max \sum_{j=1}^{n} x_{j}(b) \varphi_{j}\left(v_{j}\right)
$$

- where:

$$
\begin{gathered}
\varphi_{j}\left(v_{j}\right)=v_{j}-\frac{1-F_{j}\left(v_{j}\right)}{f_{j}\left(v_{j}\right)} \\
F_{j}(z)=\operatorname{Pr}\left[v_{j} \leq z\right], \quad f_{j}(z)=\frac{d}{d z} F_{j}(z)
\end{gathered}
$$

Revenue Maximization

- Expected Profit of a Truthful Mechanism M, is equal to the Expected Virtual Surplus:

$$
E_{t}(M(t))=E_{t}\left[\sum_{j} \varphi_{j}\left(v_{j}\right) x_{j}(t)\right]
$$

■Proof:

$$
\mathrm{E}_{\mathrm{b}}\left(\mathrm{p}_{\mathrm{j}}(\mathrm{~b})\right)=\int_{\mathrm{b}=0}^{\mathrm{h}} \mathrm{p}_{\mathrm{j}}(\mathrm{~b}) \mathrm{f}(\mathrm{~b}) \mathrm{db}=\ldots=\mathrm{E}\left[\varphi_{\mathrm{j}}(\mathrm{~b}) \mathrm{x}_{\mathrm{j}}(\mathrm{~b})\right]
$$

\square Mechanism Truthful in Expectation:

- $\mathrm{x}_{\mathrm{j}}(\mathrm{b})$ Monotone non-decreasing
- $p_{j}(b)=b_{j} x_{j}(b)-\int_{0}^{b} x_{j}(z) d z$

Revenue Maximization

\square Thus, Virtual surplus is truthful if and only if $\varphi_{\mathrm{j}}\left(\mathrm{v}_{\mathrm{j}}\right)$ is monotone non-decreasing in v_{j}
\square Myerson Mechanism:
■ Given bids b and F (here Bayesian - Nash distribution), compute 'virtual bids': $b_{i}^{\prime}=\varphi_{i}\left(b_{i}\right)$

- Run VCG on b^{\prime} to get x^{\prime} and p^{\prime}
- Output $x=x^{\prime}$ and p with $p_{i}=\varphi_{i}^{-1}\left(p_{i}^{\prime}\right)$

Revenue Maximization

$\square F$ is the Bayesian - Nash distribution of of the generalized Vickrey (second price) auction (second price) with reserve prices
\square Proof similar with the Vickrey (second price) auction (second price) with reserve price for 1 item

Revenue Maximization

\square Revenue without reserve price:

$$
\mathrm{R}_{0}=\frac{1}{3}
$$

\square Revenue with reserve price r :

$$
\mathrm{r}=\frac{1}{2}, \mathrm{R}_{1 / 2}=\frac{5}{12}
$$

Revenue Maximization

\square Revenue without reserve price:

- Given V_{A} B's valuation is likely to lie anywhere between 0 and V_{A}
- On average $V_{B}=V_{A} / 2$
- On average, V_{B} halfway between 0 and V_{A}
- On average, V_{A} halfway between V_{B} and 1

Revenue Maximization

\square Revenue without reserve price:

- $E\left[V_{B}\right]=1 / 3$ and $E\left[V_{A}\right]=2 / 3$
- $E\left[V_{B}\right]=E\left[V_{A}\right] / 2=1 / 3$

Revenue Maximization

\square Revenue with reserve price r:

- It may be the case that a bidder has positive valuation but negative virtual valuation.
- Thus, for allocating a single item, the optimal mechanism finds the bidder with the largest nonnegative virtual valuation if there is one, and allocates to that bidder

Revenue Maximization

\square Revenue with reserve price r :

- bidder 1 (same for bidder 2) wins precisely when:

$$
\begin{aligned}
& \varphi_{1}\left(b_{1}\right) \geq \max \left\{\varphi_{2}\left(b_{2}\right), 0\right\} \Rightarrow \\
& p_{1}=\inf \left\{b: \varphi_{1}(b) \geq \varphi_{2}\left(b_{2}\right) \wedge \varphi_{1}(b) \geq 0\right\}
\end{aligned}
$$

- Since $\varphi_{1}=\varphi_{2}=\varphi$

$$
\mathrm{p}_{1}=\min \left\{\mathrm{b}_{1}, \varphi^{-1}(0)\right\}=\varphi^{-1}(0)
$$

- For

$$
F(z)=z, f(z)=1 \Rightarrow \varphi(z)=2 z-1 \Rightarrow \varphi^{-1}(0)=\frac{1}{2}
$$

Revenue Maximization

ㅁ Revenue with reserve price r:

- For $r=1 / 2$:
$\square \operatorname{Pr}[$ both below $1 / 2]=1 / 2 * 1 / 2=1 / 4$
$\square \operatorname{Pr}[$ both above $1 / 2]=1 / 2^{*} 1 / 2=1 / 4$
$\square \operatorname{Pr}[$ one above $1 / 2]=1 / 2$
\square Est. payoff both below $=0$
\square Est. payoff both above $=4 / 6$
\square Est. payoff one above $=1 / 2$

$$
\mathrm{R}_{1 / 2}=\frac{1}{4} \cdot 0+\frac{1}{4} \cdot \frac{4}{6}+\frac{1}{2} \cdot \frac{1}{2}=\frac{5}{12}
$$

Allocative Efficiency

\square Let $\mathrm{x}_{\mathrm{ij}}=1$ if bidder j is assigned slot i
$\square \mathrm{x}_{\mathrm{ij}}=0$ otherwise

VCG

\square Solution of LP:

$$
\begin{array}{ll}
\max & \sum_{\mathrm{i}=1}^{\mathrm{k}} \sum_{\mathrm{j}=1}^{\mathrm{n}} \alpha_{\mathrm{ij}} v_{\mathrm{j}} \mathrm{x}_{\mathrm{ij}} \\
\text { s.t. } & \sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{ij}} \leq 1 \quad, \quad \forall \mathrm{i}=1,2, \ldots, \mathrm{k} \\
& \sum_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{x}_{\mathrm{ij}} \leq 1 \quad, \quad \forall \mathrm{j}=1,2, \ldots, \mathrm{n} \\
\quad \mathrm{x}_{\mathrm{ij}} \geq 0 \quad, \quad \forall \mathrm{i}=1,2, \ldots, \mathrm{k} \quad, \quad \forall \mathrm{j}=1,2, \ldots, \mathrm{n}
\end{array}
$$

VCG

\square Dual:

$\min \sum_{i=1}^{k} p_{i}+\sum_{j=1}^{n} q_{j}$
s.t. $\mathrm{p}_{\mathrm{i}}+\mathrm{q}_{\mathrm{j}} \geq \alpha_{\mathrm{ij}} \mathrm{v}_{\mathrm{j}} \quad, \quad \forall \mathrm{i}=1,2, \ldots, \mathrm{k} \quad, \quad \forall \mathrm{j}=1,2, \ldots, \mathrm{n}$

$$
\mathrm{p}_{\mathrm{i}}, \mathrm{q}_{\mathrm{j}} \geq 0 \quad, \quad \forall \mathrm{i}=1,2, \ldots, \mathrm{k} \quad, \quad \forall \mathrm{j}=1,2, \ldots, \mathrm{n}
$$

p_{i} : expected payment bidder
q_{j} : expected profit bidder

VCG

\square Special Case:

- CTRs bidder independent:
$\alpha_{\mathrm{ij}}=\mu_{\mathrm{i}}$
- Simple algorithm Northwest Corner Rule:
\square Assign bidder with highest value top slot, second highest value second slot e.t.c
- Assortative assignment

VCG

\square Cons

- requires solving a computational problem which needs to be done online for every search and is expensive
- Other mechanisms better revenues than VCG

GFP

\square Let $\mathrm{b} 1, \ldots, \mathrm{bn}$ be the bids. The GFP mechanism is as follows:

- Sorts bidders according to the bids b1,...,bn.
- Assigns slots according to the order (assign top slot to the highest bidder and so on).
- Charge bidder i according to his bid.
- Yahoo! used a GFP auction until 2004.

GSP

\square Let $\mathrm{w} 1, \ldots, \mathrm{wn}$ be the weights on bidders which are static and independent of the bids $b 1, \ldots, b n$. The GSP mechanism is as follows:

- Sort bidders by $\mathrm{s}_{\mathrm{i}}=\mathrm{w}_{\mathrm{i}} \mathrm{b}_{\mathrm{i}}$
\square (assume $\mathrm{s}_{1} \geq \mathrm{s}_{2} \geq \ldots \geq \mathrm{s}_{\mathrm{n}}$)
- Allocate slots to bidders $1, \ldots, k$ in that order (i.e., bidder i gets the ith slot if $\mathrm{i} \leq \mathrm{k}$).
- Charge i the mininum bid he needs to retain his slot (i.e., $p_{i}=\frac{s_{i+1}}{w_{i}}$).

GSP

\square Overture model: For every $\mathrm{i}, \mathrm{w}_{\mathrm{i}}=1$ (bidders ordered according to the bids only).
\square Google model: Google assigns weights based on the CTR at the top slot $\mathrm{w}_{\mathrm{i}} \simeq \alpha_{\mathrm{i1}}$. The assumption here is that $\alpha_{i 1}$ is static (or slow changing)
\square This ordering is also called 'revenue order' since $s_{i}=\alpha_{i 1} b_{i}$ is the expected revenue if i is put in slot 1 and there is only one slot.

GFP not truthful

\square Payoff in general: $c_{i j}\left(v_{j}-p_{j}\right)$

Table 1: GFP example						
Advertiser	v_{i}	b_{i}	Slot	c_{i}	$p_{i} c_{i}$	Total payoff
Alice	50	40	1	10	400	100
Bob	20	19	2	5	95	5
Charlie	2	2	None	0	0	0

GSP not truthful

\square Payoff in general: $c_{i j}\left(v_{j}-p_{j}\right)$

Table 2: GSP example						
Advertiser	v_{i}	b_{i}	Slot	c_{i}	$p_{i} c_{i}$	Total payoff
Alice	50	40	1	10	190	310
Bob	40	19	2	5	10	105
Charlie	2	2	None	0	0	0

GSP not truthful

\square Payoff in general: $c_{i j}\left(v_{j}-p_{j}\right)$

Table 3: GSP example - true bids							
Advertiser	v_{i}	b_{i}	Slot	c_{i}	$p_{i} c_{i}$	Total payoff	
Alice	50	50	1	10	400	100	
Bob	40	40	2	5	10	190	
Charlie	2	2	None	0	0	0	

GSP not truthful

\square Payoff in general: $c_{i j}\left(v_{j}-p_{j}\right)$

Table 4: GSP example - Alice's strategy						
Advertiser	v_{i}	b_{i}	Slot	c_{i}	$p_{i} c_{i}$	Total payoff
Alice	50	3	2	5	10	240
Bob	40	40	1	10	30	370
Charlie	2	2	None	0	0	0

VCG Payoff

\square Payoff in general: $\quad c_{i j}\left(v_{j}-p_{j}\right)$
Table 5: VCG payoffs

Advertiser	v_{i}	b_{i}	Slot	c_{i}	$p_{i} c_{i}$	Total payoff
Alice	50	50	1	10	210	290
Bob	40	40	2	5	10	190
Charlie	2	2	None	0	0	0

$\square \quad$ eachbidder j would be made to pay the sum of $\left(c_{i-1}-c_{i}\right) b_{i}$
for every I below him

GSP vs VCG

\square Search engines revenues under GSP better than VCG:

$$
c_{i} p_{i}^{V C G}-c_{i+1} p_{i+1}^{V C G}=\left(c_{i}-c_{i+1}\right) b_{i+1} \leq c_{i} b_{i+1}-c_{i+1} b_{i+2}=c_{i} p_{i}-c_{i+1} p_{i+1}
$$

Equilibrium Properties

\square GFP: Bayes-Nash symmetric equilibrium

- argument identical to that of the sealed bid first price auction for a single good for symmetric bidders (same distributions) the revenue equivalence theorem implies that revenue from GFP is the same as any other auction that allocates according to bid order.
- Revenue Equivalence Principle Under certain weak assumptions, for every two Bayesian-Nash implementations of the same social choice function f , we have that if for some type t^{\prime} of player i, the expected (over the types of the other players) payment of player i is the same in the two mechanisms, then it is the same for every value of i's type t .

Equilibrium Properties

\square GSP: Today nothing is known about the Bayesian equilibrium of the GSP auction
\square Special Case:

- CTRs are separable:

$$
\begin{aligned}
& \alpha_{\mathrm{ij}}=\mu_{\mathrm{i}} \beta_{\mathrm{j}} \\
& \text { special case: }
\end{aligned}
$$

$$
\alpha_{i j}=\mu_{i}
$$

\square Locally Envy-Free equilibria

GSP Equilibrium Properties

\square Retaliation:

Suppose advertiser k bids $\mathrm{b}_{\mathrm{k}} \rightarrow$ assigned
to position i, and advertiser k^{\prime} bids $b_{k^{\prime}}>b_{k}$
\rightarrow assigned to position (i-1).
If k raises his bid slightly, his own payoff does not change, but the payoff of the player above him decreases
k^{\prime} can retaliate...

GSP Equilibrium Properties

\square Vector of bids changes all time
\square What if the vector converges to a rest point?
\square An advertiser in position i should not want to "exchange" positions with the advertiser in position (i-1)
\square "locally envy-free" vectors

GSP Equilibrium Properties

\square An equilibrium of the simultaneous-move game (Γ) induced by GSP is locally envyfree if a player cannot improve his payoff by exchanging bids with the player ranked one position above him

$$
\mu_{\mathrm{i}} \mathrm{v}_{\mathrm{g}(\mathrm{i})}-\mathrm{p}_{\mathrm{i}} \geq \mu_{\mathrm{i}-1} \mathrm{v}_{\mathrm{g}(\mathrm{i})}-\mathrm{p}_{\mathrm{i}-1}
$$

GSP Equilibrium Properties

\square LEMMA 1: The outcome of any locally envy-free equilibrium of auction Γ is a stable assignment.
\square Proof:

- no advertiser can profitably rematch with a position assigned to an advertiser below him (equilibrium)

$$
\mu_{\mathrm{i}} \mathrm{v}_{\mathrm{g}(\mathrm{i})}-\mathrm{p}_{\mathrm{i}} \geq \mu_{\mathrm{i}+1} \mathrm{v}_{\mathrm{g}(\mathrm{i})}-\mathrm{p}_{\mathrm{i}+1}
$$

GSP Equilibrium Properties

ㅁ Proof (cont):

- show that no advertiser can profitably rematch with the position assigned to an advertiser more than one spot above him
- locally envyfree equilibrium: matching must be assortative

$$
\begin{aligned}
& \mu_{i} v_{g(i)}-p_{i} \geq \mu_{i+1} v_{g(i)}-p_{i+1} \\
& \mu_{i+1} v_{g(i+1)}-p_{i+1} \geq \mu_{i} v_{g(i+1)}-p_{i}
\end{aligned}
$$

thus :

$$
\left(\mu_{i}-\mu_{i+1}\right) v_{g(i)} \geq\left(\mu_{i}-\mu_{i+1}\right) v_{g(i+1)}
$$

GSP Equilibrium Properties

\square Proof (cont):
Suppose $\mathrm{m} \leq \mathrm{i}$:
$\mu_{\mathrm{i}} \mathrm{v}_{\mathrm{g}(\mathrm{i})}-\mathrm{p}_{\mathrm{i}} \geq \mu_{\mathrm{i}-1} \mathrm{v}_{\mathrm{g}(\mathrm{i})}-\mathrm{p}_{\mathrm{i}-1}$
$\mu_{\mathrm{i}-1} \mathrm{v}_{\mathrm{g}(\mathrm{i}-1)}-\mathrm{p}_{\mathrm{i}-1} \geq \mu_{\mathrm{i}-2} \mathrm{v}_{\mathrm{g}(\mathrm{i}-1)}-\mathrm{p}_{\mathrm{i}-2}$
$\mu_{m+1} v_{g(m+1)}-p_{m+1} \geq \mu_{m} v_{g(m+1)}-p_{m}$
thus:

$$
\mu_{\mathrm{i}} \mathrm{v}_{\mathrm{g}(\mathrm{i})}-\mathrm{p}_{\mathrm{i}} \geq \mu_{\mathrm{m}} \mathrm{v}_{\mathrm{g}(\mathrm{i})}-\mathrm{p}_{\mathrm{m}}
$$

GSP Equilibrium Properties

\square LEMMA 2: If the number of advertisers is greater than the number of available positions then any stable assignment is an outcome of a locally envyfree equilibrium of auction Γ
\square Proof:

- stable assignment \Rightarrow assortative \Rightarrow advertisers are labeled in decreasing order of their bids:

$$
v_{\mathrm{j}}>\mathrm{v}_{\mathrm{k}} \Leftrightarrow \mathrm{j}<\mathrm{k}
$$

- Thus, advertiser i match with position i, payment i

GSP Equilibrium Properties

\square Proof (cont):

- Let:

$$
\begin{aligned}
& b_{1}=v_{1} \\
& \text { and } \\
& b_{i}=\frac{p_{i-1}}{\mu_{i-1}} \text { for } i>1
\end{aligned}
$$

GSP Equilibrium Properties

\square Proof (cont):

- Let:
$b_{i}>b_{i+1}$
otherwise:

$$
\frac{p_{i-1}}{\mu_{i-1}} \leq \frac{p_{i}}{\mu_{i}} \Rightarrow v_{i}-\frac{p_{i-1}}{\mu_{i-1}} \geq v_{i}-\frac{p_{i}}{\mu_{i}} \Rightarrow \mu_{i-1} v_{i}-p_{i-1} \geq \mu_{i} v_{i}-p_{i}
$$

- So, deviating and moving to a different position in this strategy profile is at most as profitable for any player as rematching with the corresponding position in the assignment game Γ

GSP Equilibrium Properties

\square Let assign:

$$
\mathrm{p}_{\mathrm{i}} \rightarrow \mathrm{p}_{\mathrm{i}}{ }^{\mathrm{VCG}}
$$

- THEOREM 1: Strategy profile B^{*} is a locally envy-free equilibrium of game Γ. In this equilibrium, each advertiser's position and payment are equal to those in the dominantstrategy equilibrium of the game induced by VCG. In any other locally envy-free equilibrium of game Γ, the total revenue of the seller is at least as high as in B^{*}.

GSP Equilibrium Properties

\square Proof:

- Payments under strategy profile B^{*} coincide with VCG $\Rightarrow B^{*}$ locally envy-free equilibrium (construction)
- This assignment is:
\square Best stable assignment for all advertisers
\square Worst stable assignment for auctioneers

GSP Equilibrium Properties

\square In any stable assignment:
$\mathrm{p}_{\mathrm{k}} \geq \mu_{\mathrm{k}+1} \mathrm{v}_{\mathrm{k}}=\mathrm{p}_{\mathrm{k}}{ }^{\text {VCG }}$
otherwise advertiser $\mathrm{k}+1$ would find it profitable to match with position k. Next,
$\mathrm{p}_{\mathrm{k}-1}-\mathrm{p}_{\mathrm{k}} \geq\left(\mu_{\mathrm{k}-1}-\mu_{\mathrm{k}}\right) \mathrm{v}_{\mathrm{k}}$
otherwise advertiser k would find it profitable to match with position k-1
$p_{k-1}-p_{k} \geq\left(\mu_{k-1}-\mu_{k}\right) v_{k} \Rightarrow$
$p_{k-1} \geq\left(\mu_{k-1}-\mu_{k}\right) v_{k}+p_{k}=\left(\mu_{k-1}-\mu_{k}\right) v_{k}+p_{k}{ }^{\text {VCG }} \geq p_{k-1} \quad$ VCG

Dynamic Aspects

\square Online Allocation Problem

- Auctions are repeated with great frequency
- Model them as repeated games of incomplete information
- For simplicity we assume that each page has only one slot for advertisements.
- The objective is to maximize total revenue while respecting the budget constraint of the bidders

Online Allocation Problem

$\square \mathrm{n}$ number of advertisers and m the number of keywords.
\square advertiser j has a bid of $b_{i j}$ for keyword i and a total budget of B_{j}.
\square Bids are small compared to budgets
\square Since search engine has an accurate estimate of r_{i}, the number of people searching for keyword i for all $1 \leq \mathrm{i} \leq \mathrm{m}$, it is easy to approximate the optimal allocation using a simple LP
$\square \mathrm{x}_{\mathrm{ij}}$ be the total number of queries on keyword i allocated to bidder j

Online Allocation Problem

ㅁ LP:

$$
\begin{array}{ll}
\max & \sum_{i=1}^{m} \sum_{j=1}^{n} b_{i j} x_{i j} \\
\text { s.t. } & \sum_{j=1}^{n} x_{i j} \leq r_{i} \quad \forall 1 \leq i \leq m \\
& \sum_{i=1}^{m} b_{i j} x_{i j} \leq B_{j} \\
& \forall 1 \leq j \leq n \\
& x_{i j} \geq 0
\end{array} \quad \forall 1 \leq i \leq m, \quad \forall 1 \leq j \leq n
$$

Online Allocation Problem

ㅁ Dual:

$$
\begin{array}{lcl}
\min & \sum_{j=1}^{n} B_{j} \beta_{j}+\sum_{i=1}^{m} r_{i} \alpha_{i} & \\
\text { s.t. } & \alpha_{i}+b_{i j} \beta_{j} \geq b_{i j} & \forall 1 \leq i \leq m, \forall 1 \leq j \leq n \\
& \beta_{j} \geq 0 & \forall 1 \leq j \leq n \\
& \alpha_{i} \geq 0 & \forall 1 \leq i \leq m
\end{array}
$$

Online Allocation Problem

\square Complementary slackness:

$$
b_{i j}\left(1-\beta_{j}\right)=a^{\prime}=\max b_{i k}\left(1-\beta_{k}\right), 1 \leq k \leq n
$$

\square Search engine allocates its corresponding advertisement space to the bidder j with the highest $\mathrm{b}_{\mathrm{ij}}\left(1-\beta_{\mathrm{j}}\right)$
\square if we allocate keyword i to agent now we obtain an immediate 'payoff' of $b_{i j}$.
\square However, this consumes $b_{i j}$ of the budget \Rightarrow opportunity cost of $b_{i j} \beta_{j}$.
\square Reasonable to assign keyword i to j provided

$$
\mathrm{b}_{\mathrm{ij}}\left(1-\beta_{\mathrm{j}}\right)>0
$$

Online Allocation Problem

ㅁ Greedy:

- among the bidders whose budgets are not exhausted, allocate the query to the one with the highest bid
- competitive ratio-the ratio between online algorithm's performance and the optimal offline algorithm's performance
\square Competitive ratio of greedy algorithm is 1/2

Online Allocation Problem

\square Greedy procedure is not guaranteed to find the optimum solution:

- 2 bidders each with a budget of $\$ 2$.
$\square b_{11}=2, b_{12}=2-\varepsilon, b_{21}=2, b_{22}=\varepsilon$
- If query 1 arrives before query 2 , it will be assigned to bidder 1.
- bidder 1's budget is exhausted. When query 2 arrives, it is assigned to bidder 2.
- Objective Function value of $2+\varepsilon$.
- The optimal solution would assign query 2 to bidder 1 and query 1 to bidder 2 , yielding an objective function value of $4-\varepsilon$.

Online Allocation Problem

\square Similar to Graph Matching Problem:

- Consider the set G of girls matched in Mopt but not in Mgreedy
- Then every boy B adjacent to girls in G is already matched in Mgreedy: $|\mathrm{B}|$ $\leq|M g r e e d y|$
- There are at least |G| such boys ($|\mathrm{G}| \leq|\mathrm{B}|$) otherwise the optimal algorithm could, not have matched all the G girls. So: $|\mathrm{G}| \leq|M g r e e d y|$
- By definition of G also:
\mid Mopt $|\leq|$ Mgreedy $|+|G|$
- \mid Mgreedy $|/|$ Mopt $\mid \geq 1 / 2$

Online Allocation Problem

\square Can we do better?
\square BALANCE algorithm:

- For each query, pick the advertiser with the largest unspent budget

Online Allocation Problem

\square Two advertisers A and B
$\square A$ bids on query x, B bids on x and y

- Both have budgets of \$4
\square Query stream: xxxxyyyy
- BALANCE choice: ABABBB
- Optimal: AAAABBBB
\square Competitive ratio $=3 / 4$

Analyzing BALANCE

Opt revenue $=2 B$
Balance revenue $=2 B-x=B+y$
We have $y \geq x$
Balance revenue is minimum for $x=y=B / 2$
Minimum Balance revenue $=3 \mathrm{~B} / 2$
Competitive Ratio $=3 / 4$

BALANCE: General Result

\square In the general case, worst competitive ratio of BALANCE is

- $1-1 / \mathrm{e}=$ approx. 0.63
\square Let's see the worst case that gives this ratio

Worst Case for BALANCE

$\square \mathrm{N}$ advertisers: A1, A2, ... AN

- Each with budget B > N
- Queries: $N \cdot B$ queries appear in N rounds of B queries each:
- Bidding:Round 1 queries: bidders A1, A2, ... AN
- Round 2 queries: bidders A2, A3, ..., AN
- Round queries: bidders $A \mathrm{i}, \ldots, \mathrm{AN}$
\square Optimum allocation: Allocate round i queries to Ai

Worst Case for BALANCE

BALANCE Algorithm

$\square \beta_{j}{ }^{\prime}$ s as a function of the bidders spent budget

$$
\begin{gathered}
\phi(x)=1-e^{x-1} \\
\beta_{j}=1-\phi\left(f_{j}\right)
\end{gathered}
$$

$\square \beta_{j}{ }^{\prime}$ s as a function of the bidders spent budget
$\square \mathrm{f}_{\mathrm{j}}$: the fraction of the budget of bidder j , which has been spent
\square Algorithm: Every time a query i arrives, allocate its advertisement space to the bidder j, who maximizes $b_{i j} \varphi\left(f_{j}\right)$

BALANCE Algorithm

\square Let k be a sufficiently large number used for discretizing the budgets of the bidders.
\square Advertiser is of type j if she has spent within ($j-1 / k, j / k$] fraction of budget so far.
$\square \mathrm{s}_{\mathrm{j}}$: Total budget of type j bidders.
\square For $i=0,1, \ldots, k$, define w_{i} : Amount of money spent by all bidders from the interval ($i-1 / k, i / k$] of their budgets
\square Discrete version of function φ :

$$
\Phi(s)=1-\left(1-\frac{1}{k}\right)^{k-s}
$$

BALANCE Algorithm

\square When k tends to infinity:

$$
\Phi(s) \rightarrow \phi\left(\frac{s}{k}\right)
$$

나 OPT be the solution of the optimal offline algorithm

BALANCE Algorithm

\square Lemma: At the end of the algorithm, this inequality holds:

$$
\sum_{i=0}^{k} \Phi(i) s_{i} \leq \sum_{i=0}^{k} . \Phi(i) w_{i}
$$

BALANCE Algorithm

\square Lemma Proof:

- Consider time query q arrives.
- OPT allocates q to a bidder of current type t, whose type at the end of the algorithm will be t^{\prime}.
- bopt, balg: amount of money that OPT and the BALANCE get from bidders for q.
- Let i be the type of the bidder that the algorithm allocates the query

$$
\Phi\left(t^{\prime}\right) b_{\mathrm{opt}} \leq \Phi(t) b_{\mathrm{opt}} \leq \Phi(i) b_{\mathrm{alg}}
$$

BALANCE Algorithm

Theorem: The competitive ratio of Algorithm 1 is $1-1 / \mathrm{e}$.
Proof:

- By definition: $\quad w_{i} \leq \frac{1}{k} \sum_{j=i}^{k} s_{j}$
\square Thus:

$$
\sum_{i=0}^{k} \Phi(i) s_{i} \leq \frac{1}{k} \sum_{i=0}^{k} \Phi(i) \sum_{j=i}^{k} s_{j}
$$

\square We conclude that:

$$
\left(\Phi(0)-O\left(\frac{1}{k}\right)\right) \sum_{i=0}^{k} s_{i} \leq \sum_{i=0}^{k} \frac{i}{k} s_{i}
$$

\square Note that as k goes to infinity the left-hand side tends to ($1-1 / e$)OPT. Right-hand revenue of the BALANCE

Bibliographic Notes

\square G. Demange, D. Gale, and M. Sotomayor. Multi-item auctions. J. Political Econ., 94(4):863-872,1986
\square B. Edelman, M. Ostrovsky, and M. Schwarz. Internet advertising and the Generalized Second Price auction: Selling billions of dollars worth of keywords. Amer. Econ. Review, In press
$\square \quad$ S. Lahaie. An analysis of alternative slot auction designs for sponsored search. In Proc. 7th Conf. On Electronic Commerce, Ann Arbor, MI, 2006
\square G. Aggarwal, A. Goel, and R. Motwani. Truthful auctions for pricing search keywords. In Proc. $7^{\text {th }}$ ACM Conf. on Electronic Commerce, Ann Arbor, MI, 2006
\square A. Mehta, A. Saberi, U. Vazirani, and V. Vazirani. AdWords and generalized on-line matching. In Proc. 46th Annual Symp. on Fdns. of Comp. Sci., 2005
\square Internet

